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TIME DEPENDENT MEAN-FIELD THEORY

J. W. Negele

Center for Theoretical Physics, Massachusetts Institute of Technology,
Cambridzc M* 02139 USA

and Los Alamos Scientific Laboratory, Los Alamos, NM 87545 USA

Abstract

The physical and theoretical motivations for the time-dependent mean-field thcory are
presented and the successes and limitations of the time-dependent Hartree-rock initial
value problem are reviewed. New theoretical developments are described in the treatment
of two-hody correlations and the {ormulation of a quantum mean-field theory of large-
amplitude collective motion and tunneling decay. Finally, the mean-field theory is uscd
to obtain new insights into the phenomcunon of pion condensation in finite nucloi.

1. Motivation

The objective of nuclear many-body theory is to understand the ohservahle propertics
of nuclear systems in terms of the underlying nucleon-nucleon interaction. Until eur
present qualitative ideas about the interactions between hags of quurksl) are replaced by
a tractable quantitative theory of strong interactions, nuclear theory will netessarily
remairn phenomenological a: the level of the nucleon-nucleon interaction. However, given
the nucleon-pnucleon scattering data and deuteron bound state duta embedded in present
phenomenolngical potentials, it is quite reasonable to expect that the static potential
approximation will not ke catastrophically in error. The analogous system of liquid He,
which in terms of the product of the repulsive core volime time specitic density is eight
times denser than auclear matter, is particularly encouraging in this respect. Although
the electron wave functions of one He atom arc essentially alwavs significantly overlap-
ping those of at least one niner atom, nevertheless a static potential may be defined con-
ceptually clearly in terms >f the Born=-Oppenheimer approximation, and phenomenological
static potentials determined from experimental scattering dati and virial coefficients
reproduce the bulk properties of liquid He quite satisfactorily

The goal of this talk, then, will be to attempt to understand the excecdingly com-
plicated properiies of comnosite systems bound by a two-body static potential solely in
terms of that potential. Thus, we want phenorena to emerge naturally from the theory
without being embedded a fortiori by ansatz. By thig criterion, it will be illegitimate
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ping those of at least oue other atom, nevertheless a static potential may he defined con-
ceptually clearly in terms of the Born-Oppenheimer approximation, and phenomenclogical
static potentials determined from experimental scattering data and virial coefficients
reproduce the bulk properties of liquid He quite satisfactorily.

The goal of this talk, then, will be to attempt to understand the exceedingly com-
plicated properties of composite systems bound by a two-body static potential solely in
terms of that potential. Thus, we want phenomena tov emerge naturally from the theory
without being embedded a fortiori by ansatz. By this criterion, it will be illegitimate
to loock at a hnst of experimental data, note that it all seems to be described in terms of
a few selected collective variables, and then construct a theory containing only thuse
variables. Similarly we rule out describing a class of phenomena which appcar statistical
empirically in terms of a theory which is only allowed to contain Gaussian distributed
quantities. Rather, we seek a theory in which the initial conditions relevant tu¢ an ex-
periment and the two-body force determine the relevant collective variables or statistical
behavior. The theury itself should seek out the right shapes for intrinsic states and for
vibrations, and it should generate the appropriate soft or uustable spin-isospin modes as
a result of the one-pion exchange compunent of the force. The theory is then free of any
prexcription for such quantities as one or two-center shell model potentials or mass par-
smnters, and Lo Lthe degree Lo which it succeeds in descrihing nuclear saystems under normal
experimental conditions, it offers genuine predictive power to deal with the extreme con-
ditions which are the tepy 5 thi conlerence.

The problem I have posed of w.icrstanding the properties oi systems processiug large
numbers of degrees of freedom in terms of the underlying Lagrangian or Hamiltonian per-

vades all of theoretical physics, and we will thus draw heavily from many-body techuiques
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developed in field theory, plasma physics, solid state physics, and condensed matter
physics. My approach will be to attempt to formulare a systematic hierarchy of successive
approximations such that the lowest order contains the physics of the mean field. Further-
more, I will always seek to approximate the expectation values of few-body operators rather
than calculate the full many-body wave function, since even in the most favorable cases in
wvhich a few body operator is well approximated by these techniques, the overlap hetwecn

the exact and approximate many-body wave functions decreases exponentially in the numher

of particles. Physically, since the many-body wave function involves the simultaneous
correlations of all N particles in the system, it is obvious that such detailed infur-
mation could never be reliahly embedded in a low-order approximation. For the expectation
value of a finite-range few-body operator, however, the correlations of all the particles
outside the range of the operator are clearly irrelevant, so there is far greater reason
to hope to develor a viable approximation for such expectation values.

In addition to the aesthetic appeal of the resulting theory, there are a number of
physical motivations for the choice of the mean fiecld tneury as a starting point for
nuclear dynamics. One of the best justifications is Hartree's original intuilive argument
that an individual particle should respond to the average field generated by interactions
with the surrounding particles. For systems of the size of observed nuclei, the mcan
field approximation is 4 far more sensible starting point than the opposite extreme ol
assuming complete Jocal equilibration. Instead of the mran free path gencrally cited by
adherents of the hydrodynamical model, it seems to me that the relevant length scale tor
collisions is in fact the longitudinal momentum eqguilibration length==the distance 1t
takes for two colliding fluids to slow down to thermal velodtitics. On the averap:e,
several collisions are requised for tarrmalization, and when the nucleon=pucleon ampli-
tudes are forward peaked, the longitudinal equilibration Jength is significantly longer

2)

than generally quoted values for mean free paths, Since nuclear shapes svolve by motion
of the surtace, 1t is particularly important that the surface itselt be treated realis=
tically. !n contrast to Thomas Fermi or hydrodynamical theorvies, the mean=ticld approx-

imation includes the wave function phase coherence characteristic ol the nuclear surface



so that the kinetic energy density and thus evolution of t.ne surface should be specified
reasonably reliablv. Finally, because of the proliferation of misconceptions, it is use-
ful to emphasize the fact that the mean-{ield theory inciudes a great deal of the physics
of two-body ~nllicions. The mean field, of course, is rompletely generated by the two-
body potential. Yurthermore, =11 forward scattering ampiitudes and one-particle one-hole
amplitudes defined with respect to this instantaneous one-body density matrix arc
included, and only the two-particle two~hole amplitudes are neglected.

Given the ambitions of this program, it is clear that a very high price must be paid
in the numerical complexity of the resulting equations. In many cases, the problem may be
rendered tractable, or nearly :«, by the introduction of physically motivated approxima-
tions. The most crucial of these is to assume that the short range correlations in the
time-dependent problem differ negligibly fiom those in nuclear matter, and thus to une
directly effective interactions derived fiom nuclear matter, or equivalently, simple

})

Skyrme=-like parametrizations of these effective interactions.’ The status of nuclear
matter theory and effective intersctions is well documented ain this litﬂruturva-b) and
will not be discursed further. Additional reductions in computational etiort may be
cffected by the imposition of various symmetries.5'7'8)

As a final motivation for the time-dependent mean-field theory, it is usetful to
survey briefly some salient results for stationary states and small vabrations built upon
these states and to note the quantitative agreement with eXperimental charge distributions

which is attpined. Figure )1 shows the rather spectacular agreement of theoretical



predictions for elastic electron scattering from 208
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Ph with the subsequent experimental
data from Saclay. Comparison of the theoretical density with the charge distribution
reconstructed from the data in Fig. 2 shows the quantitative precision obtained in the
nuclear surface, with the only significant discrepancy being the tendency of the mean-
field approximation to exaggerate shell fluctuations. In this case, the central maximun
arises from the complete occupation of the 3s proton state, and should be somewhat reduced
by configuration admixtures produced by the residual interaction.lo) Having verified ade-
quate treatment of the nuclear surface, the next essential test is that the mean field
reproduce the correct shapes of deformed intrinsic states. One observes from the mean-
field predictions for the shapes of a variety of rare-earth and actinide nuclei in Fig. 3
that the theory specifies far more about quadrupole, hexadecapole and higher multipole
deformations than a single deformation parameter, and it is indeed gratifying that the 0’
+ L' form factors shown in Fig. 4, which essentially determine the Fourier transform of
the Lth component of a Legendre expansion of the density, agree with experiment to almost
the same precision as in the elastic form factor of 2OBPb. In the vibrational model, one
obtains a test of various derivatives of the intrinsic density di;;;ibution, and Fig. 5

U intrinsic state.]2)

demonstrates again the validity of the mean field theory of the
Finally, since the familiar random phsse approximation (RPA) is just the infinitesimal
amplitude limit of the .ime-dependent mean-field theory discussed below, in Fig. 6, we

have shown how well the collective 3~ state in Pb is reproduced in the mean field appiox-

imation.
I1. Theory

Insight into the theoretical content and possible systematic generalizations of the
time~dependent mean-field theory is obtained by considering alternative formulations of
the time-dependent Hartree Fock (TDHF) initial value problem. (Ouc should note that there
is & tendency in the literature to sloppily interchange the term Hartree Fock, which im-
plies use of the bare two-bodv interaction, with the term mean-field, which refers to
either & bare or effective interaction. In theoretical derivations, it is clear whether a
bare or effective interaction is intended in principle, and for realistic calculations, an
effective interaction is always used.)



2.1 The TDHF Initial Value Problem

It is convenient to express the TDHF equations in terms of the one-body density

matrix, in which case the equation of motion is

ip = [h,p) (1)
wherc .
plx,x’,t) = <’ (x',t) d(x,t)> (2)
and
h=K+ tr pv (3)

“K+ ] dxzdxl.(xlleleax4 - x4x3> p(xé.xz)

Since the equation is first order in time, the density matrix at any subsequent time is
fully determined by specifying a one-body density matrix at the initial time. If the
initial density matrix corresponds to a determinant, i.e. satisfies p2 = p, it will
continue to do s0 at all later times, but eq. (1) is not necessarily restricted to
determinants. The TDHF equation, eq. (1), is applied to the scattering of nuclei semi-
classically by localizing the initial positions of the centers of static HF solutions for
the target and projectile and boosting these Galilean invariant HF solutions to the
desired incident cm velocities.

Postponing, for the moment, the conceptual ambiguities of this semiclassical treat-
ment of scattering, two computational results are shown in Figs. 7 and 8 which demonstrate
that eq. (1) quantitatively reproduces the strong dissipation observed in low energy heavy
ion phenomenvlogy. Since the fusion cross section requires slowing down the projectile
enough to form a compound nucleus for a range of impact paramecters forming a disk (or
ananulus!) of impact parameters of the proper area, the data in Fig. 7 are a very sensitive

15)

diagnostic of dilsipltion.lk) Similarly, in the deep ir: lastic collision shown in

Fig. 8, the crucial issuc is whether the mean field generates enough excitation encrgy in
the final fragments so that in the deep inelastic peak and backward directions, they recede
with essentially only the Coulomb barrier energy and no residual translational collective
energy. With two enticing examples suggesting that the time-dependent mean-field theory
may retain some of the quantitative predictive powe: already demonstrated by the static

mean field theory, we now turn to several alternative derivations.



2.2 Alternative Formulations

Perhaps the most economical way to obtain eq. (1) is application of the

time-dependent variational principle.lb)
Varying the action
6 <¥li & - HIW> (4)
ot

with no restriction on the form of ¥ simply yields th= many-body Schrodinger equation
9w - _ .
i a—t-l‘l’r' = H|Y¥: (5)

Restricting ¥ to be a Slater determinant
= Y 4 .
yields the following sct of equations equivalent to eq. (1)
ié = he, (1)

where h is defined in eq. (3). Explicit formulatior of the theory in terms ¢ f a many-
body wave function has the obvious advantage that we have a familiar language in which to
think @bout the theory and to relate to alternative approximations. Thus, one observes
that at each instant, the TDHF wave function acquires exactly the correct one-particle
onc=-hole components and difiers from Lhe state produred by evolution with the tull
Schrodinger equation precisely hy neglecting all two-particle two-hole compenents.  One
also can appreciate how significantly the TDRF wave function ditfers in general from the
lowest state in the adiabatic instantancous basis generated by h by simply expanding the

TDHF wave function in that basis., One disadvantage of this forumlation in terms of a wave
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also can appreciate how significantly the T)F wave function differs in general from the
lowest state in the adiabatic instantaneous basis generated by h by simply expanding the
TDHF wave function in that basis. One disadvantage of this forumlation in terms of a wave
function is the obvious temptation to take more than its one-body density matrix seriously.
A second disadvantage is the fac. that it is not obvious how to implement a sequence of
systematic improvemencts in the variational ansatz.

An alternative derivation of eq. (1) is to truncate the Martin-Schwinger Green's func-
tion hierarchy.17) In general the time derivative of GN is related to G

N+1* Gy» and
GN_1 and the equation of motion for G, is

[i 5%- - T(x)16;(1,1") = 6(1,1") = ifdx,v(x,=%,) G,(1,2;1;2")

(8)
1

8"t
Making the obvious approximation that the two-particle Green's function is the anti-

symmetrized product of two single-particle Green's functions
62(1,2;1 2') = 61(1 1 )61(2 2') - 61(1 2 )Gl(l 2)

again yields the TDHF lpproximation.s) Adoption of corresponding prescriptions for 63 in
terms of G2 and G1 thus offers the possibility of obtaining a closed equation for the two-
body correlations contuined in GZ' Although such formal developments have been carried
out by Orland and Schaefferla) und by Tang‘g). the full theory is so cumbersome that it

has not yet been spplied to any problems, and implementable approximations to the full
theory are laden with dubious prescriptions.

Yet another formulation is based on truncation of the time-dependent coupled-cluster
hierlrchyzo), the time independent limit of which has successfully been applied to sta-
tionary states of nuclei with realistic inLeractions.ZI) The many body wave function is



written

S, +S.+...4S
y> = e 1 2 P> = e S (9)

where [¢> denotes a States determinant and Sm represents a general sum of m
particle--m hole amplitudes. Multiplying the Schrodinger equation by e_S and projecting

onto a complete set of states

H-i §-} esl¢> =0 (luy

+ eS¢
P at

+
< .
¢l 3, -+.. 2,8 a

and expanding the multicommutator series yields a set of coupled equations in which S

is a functional of and lower S's. The TDHF approximation is recovered by setting

S -
Sm=0 for all m 2 2, :ng higher approximations arc¢ straightferwardly obtained by retaining
higher S's. (The natural truncation for strong repulsive cases is morr complicated and
is discussed in ref. 20.) A significant advantage of this theory relative to the Green's
function formulation is the fact that the two-body correlations may be expresscd 1n cour-
dinate space n terms of
ngiz Gpaky)

a function of two coutinuous spatial variables ind two discrete hole labels, in contrast
to the two-particle Green's function containing four spatial variables.
2.3 Limitations of the TDHF Initjal Value Problem

One salient limitation of the TDHF approximation is the treatment of twu-body courre-
lations. Although in th- static case, the strict HF approximation with the bare nuclear
potential is rendered totally unphysical by the omission of two-particle two-hole ampli-
tudes, inclusion of short-range correlations via the G-matrix sum of ladder diagrams or
some other similar effective interaction yields a very physical and useful mean-field
theory. This crucial class of two-particle two-hole contributions associated with the

repulsive case is included approximately in the tiime-dependent case by using in the



time-dependent problem the density-dependent effective interaction derived for ground
states. Thus, the time evolution of the two-body correlation function is rompletely
neglected and presumably becomes a serious error in high energy collisions.

A second salient limitation of the TDHF initial value problem concers its semiclas-
sical aspects. One is forced to construct an initial condition appropriate to the phys-
ical prolLlem of interest and consistent with the subsequent approximations in the mean
field evolution. In the scattering problem, one localizes the initial nuclei in velocity
and impact parameter and seeks to interpret the subsequent density matrix as that arising
from wave packets suitably defined for the scattering problem. However, since many in-
equivalent wave functions can have the same one-body density matrix, it is clear that
substantial conceptual problems exist. At a more practical level, the problem of spec-
ifying appropriate initial conditions is quite evident if one tries to construct approx-
imations to quantum eigenstates of large amplitude collective vibrations or to calculate
the lifetimes for tunneling decay of a fissionable nucleus. In the former case, no iui-
tial condition appears natural, and in the latter case, the obvious candidate is the
deformed HF stationary state which has the unphysical property of having at time-
independent one-body density matrix when evolved with the TDHF equations.

2.4 Treatment of Two Body Correlations
Some insight into the role of two-body correlations may be obtained from the exactly

solvable two-level Lipkin mode]lz) specified by the Hamiltonian

- E + v + o+
s pz Ppapo * 2 E—apo ®p'o 'p'-0 %o Ly
o=11 0=11

The ground state energy for a 14 particle system as a funclion of interaction strength V\
is shown in Fig. 9 first for the HF approximation and then including the two-particle two-
hole amplitude 52 in tre coupled cluster theory.zo) Although the effect of two-hcdy
correlations is less drastic than for hand-core nuclear poten.jals, one still observes a

dramatic improvement in Lhe ground state energy.



To emphasize the fact that few-body operators are well described while the many-body

wave function is meaningless, the operator
J, = % E (a;+np+-a;_ap+)

which counts the number of particles in the upper state minus the number in the lower
state is considered in Fig. 10. Since the Lipkin Hamiltonian only moves pairs of par-
ticles, projection of the ground state wave function (evolved adiabatically from the
non-interacting ground state) ontu states of specified number in each level must yield the
odd-even alternation shown by the solid line in Fig. 10. Since no low-order approximation
has any information concerning such 14-body correlations, the HF and S2 approximations
display no such alternation but yield quite adequate approximations to <Jz> and <J§>.

Finally, application of the time-dependent coupled cluster approximation to two
l4~particle Lipkin systems which begin in their respective grc:ind states and then form a
28-particle interacting system for time 7T vyields the results shown in Fig. 1l. Again,

one observes that expectation values of the two-body operators H and

2
2 _ + .+
I E@w'p- * o apap,]

are systematically improved by the inclusion of Sz. Hence, we conclude that, in general,
evolution of S2 is required to obtain reliable expectation values of two-body operators.
Thus it is not surprising that although mean fragment masses are well reproduccd in TDHF,
the dispersion in particle number is systematically in error. Although the Lipkin model
is quite oversimplified, one should note that numerical solution of the coordinate-space
coupled cluster equations in ref. 20 is feasible for repulsive core potentials in one
spatial dimension, and would shed considerable light on the role of two-body correlation

corrections to the mean field theory.

2.5 Derivation of a Quantum Mean-Field Theory Using Functional Integrals
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corrections to the mean field theory.
2.5 Derivation of a Quantum Mean-Field Theory Using Functional Integral.
Stimulated by developments in quantum field cheory in which systematic expansions are

developed about the solution to the corresponding classical field equacions, significant
progress has been made recently in formulating the quantum many-body problem in terms of
an expansion about solutions to appropriate mean field equntions.za-zs) In contrast to
the TD-F i-~itial value problem, the theory is conceptually unambiguous since one applies
appro¥im-tyons directly to exact expressions for qQuantum observables.

The :wsential steps in the method are as follows. First, one selects a few-body
operator corresponding to a physical observable of interest and then one exprc.ses its
expectation value in terms of the evolution operator. For example, to calculate the bound
state spectrum «ad the experctation value of any few-body operator a in .ny bound state,
one may evaeiucte the pcles and residues of the following expression:

] 1ET -iHT _ , <nja|n>
ifdTe™ troe =3 Bk +iz (12)

Next, one utilizes an appropriate functional integral representation for the many-body

evolution operator. One particularly simple choice is the Hutba:-d-Stratonovich trans-
formation used in ref. 23

-é Jdxdx’dt p(x,t) o(x=x')p(x't) 1 Jovo  -ifovp

Te = [ D|a] e2 Te (13)

wvhich replaces the evolution operator corresponding to a Hamiltonian containing two-body
interactions by an integral over an infinite set of evolution eperators containing only

oune-body operators. A second alternative break: the evulution into very small time steps

9



between each of which an overcomplete set of Slater determinants is innertedzs)

=iHT =iHAT

e Mg = cyfome e § du(z) 1¥(z)><¥(z) e T 1y > (14)

The *heory is rendered manageable by virtue of a simple choice of the measure du(z) which
efficiently handles the overcompleteness. A third alternstive is to simply use Grassman

24)

variabler as in field theory”™ °, so that the trace of the exponential of the action

becomes
il 2 Gtz -2t 2z
[ ke s = &
tr el = J DIz ,Z] e ot 2 (15)

Finally, for any of these functional integral representations, application of the
stationary-phase approximation (SPA) yields TDHF equations plus a systematic hierarchy of
corrections.

The essence of the program ir exemplified by applving it to the trivial prolaem ol
one-dimensional quantum mechanics in the polential shown in Fig. 12, for which cane we may

write 26)

1
H=E

Tr ikT =illT

i [dT e [ dq <q|e lq®

o
i Jar oFT 1 ag 5 ulqu)) elSlat)] (e
0 qlt)=q(0)=qy

where S|q(t)] in the Feynman path integral denotes the clasaical action. Application of

the SPA to [ Dlq(t)] requires that q(t) must satisfy the clandical equation of motion



m— q= -W (17)

and application of the SPA to [ dy requires that the momentum at time T equal that at

time 0. Thus, we obtain

-]
1 . 1 (ET+S(T))_ . iW(t .
Trﬁ=:IdTZe1( Mz i farg ¥V (15)
0 e Uep
where S(T) is the action r a periodic solution to the classical equation of motion and
the sum 2 over all such periodiv classical solutions.
cl
Finally, the SPA is applied ro the time integral 1n eq. (18), giving rise to both
real and complex stationary value: of the period. Real periods simply correspond to
multiples of the fundamental periods fo: classical oscillations around minima (a) and (c)
in Fig. 12 such tliat the classical energy equals E. The period and contribution tn the

reduced action W(T) «! v1. (18) for periodic solutions in vegion a (and similarly for

region c) are
. m
1. =2 [ dq f!(l’f“/(q) (19)

v, =[p¢.| dt =2 [ JZm(H-V(q)) dq (20)

and

10



The meaning of classical soluticns for imaginary time is most evident if one simply
replaces it by 1 in the equation of motion. The two resulting factors of i in eq.
(17) ore then equivalent to reversing the sign of V(q). As sketched i1n Fig. 12, this has
the effect of interchanging classically allowed and forbidden regions, so one now has

periciic solutions in region b with imaginary period and reduced action

P o .
iT, = Tb =2 [ dq Viq)-F) (21)

and

iwz(E) Wz (E) = 2 J'\ZnﬂV(q)-E) dq (22)

Combining all integral numbers of periods in the three ruvgions thus yields an 1in-
tinite sequence of stationary points Tlmn = RTa + mTc = in Th znd the vorrespomding sum
over classical pericdic trajectories in eq. (18) yields multiple geommetric serics which
sum to

iwW. =W, iW 1%+ )

1 = v a“"‘ b +e © 20
H-E ih:)(f 1w:) W
) " b

I-¢ I = -

For the case of a single well, in which case regions () and () don't exist, this vields

Tr (o

poles at encrgics H" such that

Wl(H") = [ pdg = 2non )

Equation (24) diffevs from the usual Hohr=Somnerfeld quantization condition @nethn only
becauke we have neglected phase tactorn arising from quadratic correctjons to the 81A, In

the case of spontancous decay ol a quasi=statiopnary state, region (¢) is elongated to



extend throughout an arbitrarily large normalization box, and299e obsvrves that Wc then

yields a vanishing contribution to the smoothed level density

-1
=\2 2
- W
PY H % Im Tr ;—-:}—I—) « %—9 + ﬂil‘l —;) (25)
\

The level density, eq. (25), exhibits quasi-stationary states with encrgies given hy coq.
(24) and widths
aw. -wh(sn) ) -Hh(EN)

rn=zaT(‘ —2T“l"

”~

2u)

vhich agree with the familiar WKB result,
Straight forward application of the same program to the many=-body problem results g

application of the SFA to the T and o integrals in an expression of the forn

IdT (‘”'-1 tr ..'l"'l- : f oT (‘iHT J- Dl"l ‘.'SIUI oo

and yields three distinet classes of molutions.

Time=independent solutions to the SPA equations reproduce {anilivar HE theere. T
quadratic corrections to SPA produce the RPA ground state correlatcons, and the syrtemta
evaluation o higher corrections simply generates standard perturbation theory. Aside
from providing o icrse and elegant derivation of perturbation thoory, this functional
integral approach has the additjonal advantage of dealing etficiently with vonutvaint:,
such as those arining in gauge thrnrivﬁ.za’

A second (laks comprines time=dependent solutions with real period which corpespond
to eigenfunctions of lerge-amplitude collective motion, A et of N kingle=particle wave
fumc tions ubey the ol lowing eigenvalue equatiion

[=4 5 * K0t ov] ¢ 06t) - ad ikt (b



subject to the periodic boundary condition

.i(xl ;) = 016. - ;) (29)

where the self-consistent mean field =atisfies
%
o(x,x’,t) = Z ¢, (x',t) @,(x,1) (30)

and the allowed values of the period are specified by the quantization condition

T/2

J dx Jr du 0*(x,L) i 5% ¢(x,t) = n 2n (31
=T/2

Clearly the non=lincar differential eqs. (28=30) In four space=timr dimensions have
the same general structure as the static Hartree equations in three space dimenszions, aml
they may be rolved by the urual iterative procedare.  Application of this method to the
ground state multiplet of the spectrum of the Lipkin model yields the results shovr in
Fig. 13, Further digcussion of large amplitude collective motion using this geneial
approach may be found in ref. 24,

The third dlasy of solutjons is made up of Lime=dependent solutions with fmagiaary
period corresponding to tunneling phenomena in claksically forbidden domains. 1o this

cake, the single=particle equations (28) are replaved by

i[jfl 1+ K4 ll'(f{] ¢|(x.l) = (li¢l(x.l) ()

with the xame periodic boundary condition (29) and the self=contistent mean field

olx,x', 1) = i ¢|(x'.-|)¢l(x.l) (1)



Of particular physical interest are solutions which in the limit as t T/2 -~ = ® approach
the HF stationary local minimum for a fissioning nucleus and evolve near T ~ 0 toward
the entrance to the classically allowed domain near the scission point for two fisrion
Fragment - Such soluti-»x ' ‘11 be denoted "hevioes," following Coleman, and bear great
formal similarity to the "pseudoparticles" and "inslanlons"sl) investigated extensive!ly an
field theory. Whereas the Laclidean soiutions arising in field theory have trivial .pae
tial dependence, being either constant or spherically symmetric in space-time, the non-
trivial spatial dependence of the present "bounce" solutions is crucial to the phyiics and
precludes analytic solution even for schematic models,  Furtheroore, for a nudcleuas pornes-
sing many decay channels such as symnetric fission, asymmetric fission, alpha, proton, or
neutron decay, there will exist several digtinet well-separated hounces, and the analog of

the width ' in eq. (26) is the sum of partial widths:

=2 [ (34)

where each partial width {8 calcalated from the action determined for the bounce solution

tor the appropriate channel

T/2 0
r(m) . Tm p-j dx J-T/? dv ¢(x,-1) a d(x,1) L



To make . .e bounce solutioLs more concrete, it is useful to consider a saturating
model system of nuclei in one spatial dimension interacting with an effective interaction
of the Skyrme form.24) The analog of the Coulomb force is adjusted such that a l6-par-
ticle system is unstable with respect to fission into two 8-particle daughters which are
in turn stable with respect to further decay into 4-particle granddaughters. The con-
strained HF energy as a fun_-tion of <x2> for the 16-particle system is shown in Fig. 14,
and displays the expected form of a fission barrier. The self-consistent single-particle
solutions to eqs. (32), assuming spin-isospin degeneracy 4, are shown in Tig. 15 at the
two turning pointr, T =2 T/2 and t = G. As expected, the determinant of these wave
functions corresponds to the 16-particle HF static solution at T = * T/2 and closely
approximates the product of two 8-particle determinants for nearly-separated fragments at
T = 0. The corresponding rensity, O(x,t) 1is shown in Fig. 16 for successive times be-
tween 12 = -T/2 and T = 0.

Solution of eqs. (32) in four space-time dimensions is obviously computationally more
cumbersome, but has been accomplished for a range of nuclei up to A = 32. In these cal-
culations, the proton charge has been increased to obtain appropriate values of the fiss-
1lity, and preliminary results for the fission of aBe are shown in Fig. 17. Although
spurious cm motion problems prevent quantitative comparison of this particular calcula-
tion with experiment, this result does demonst-ate the feasibility of obtaining bounce
solutiuns with the appropriate properties and shows that all the relevant shape degrees of
freedom rcally are incorporated in this self-consistent theory.

Clearly, many other applications of quantum mean-field spproximations arising from
such functional integral experssions are possible. One should not only be able to under-
stand sheli effects and the rompetition between symmetric and asymmetric channhels in spon-
tancous fission, but also be able to address compound nucleus decay. Reaction theory
pores many important and challenging problems. Whereas it is relatively straightforward
to write down tractable mean field expreusions for S-matrix elements, we have emphasized
above that there is no reason for believing that a mean field theory is really capable of

describing the overlap of two many-body wave functions. The key to a meaningful reaction theor
14



believe, is rinding an appropriate functional integral expression for relevant expectation
values of tew-body operators, such as mean fragment charge, mass, or excitation energy,
which yields numerically tractable mean-field equations. In contrast to the TDHI ipi ia)l
value problen, «ri. Jescribes ti.. probable cutcomt -~.i'h functional integral expres-
sions for specific observables can address sp.cific components of interest, even those
which are exponentially small relative to the most probable component. This, then, is the
natural language to address such diverse and important questions as superheavy nucleus
formation in heavy ion collisions, and tunneling phenomena in light=ion collisions associ-
ated with quasi-molecular states and the resonance behavior in such systems as 24Ng. Fin-
ally, application of analogous techniques to field theories such as the two=dimensional o
model offers one the only availabler means to investigate the dynamics of forming abnormal
Etates in appropriate finite geomvtry.Bz)
4. _ Application to Pion Condensation n Finite Systems

To fovus many of the general ideas associated with my discussions of the time-
dependent mean field theory on a concrete problem relevant to a somewhat extreme state of
nuclear systems, 1 will conclude my talk with some remarks relating to the observation ot
pion condensation in finite systems. For simplicity, I will consider the static limit in
which pion propagators are reduced to the static limit, and pions thus enter only Lhrough
o renormalized puclear interaction containing a one-pion exchange potential. At the onset
of condensation, w = 0, rendering the static reduction exact, and the approximation
should remain valid for tinite w much less than the pion mass P Tor the present dis-
cussion, it is sutficient to consider an interaction of the Fermi liquid torm aups ated
with an explicit OFLE term, which has the following spin=izospin components:

"

L"!. ! Ot 0, N, ()

Viy) = "R JY: N GRER R .o
2 1 "2 |‘2 (ll"'l



In the time-dependent mean-field framework, the natural quantity of interest is the RPA
propagator which simply describes the TDHF evolution of a system for infinitesimal ampli-
tude excitations and thus contains all the relevant information about modes having the

quantum nuanbers of the pion. I infinite matter, the RPA propagator contains the factor:

-1
2 2
N}l - (g' - 9-[% —-z—q--i) 4 no(a (37)
M p*q

where the Lindhardt fun:cion is defined

8(Ip+gl - k) 8k = Ipl)

INCP kr) =% C (38)

-t
heal 13!

4.1 Optimal Experiments for Precursor Phepomena

From the perspective of mean~field theory, there is ro question as to how to go about
looking for soft spin modes in a pot. of liquid helium. One simply measures the respcnse
tunction which specifies the spin response at some space-time point to an arbitrarily weak
spin excitation at some other point. As is well known, inelastic electron scattering
measures precisely the respense function of a finite nucleusaa). so that one may directly
study the finite nucleus ana'og of thi polarization propagator in eq. (37).

Measuring the response function through inelastic elertron scattering has the follow-
ing distiuct advantages relative to the popular but ambiguous experiments in whirh un-

b
natural parity states arc excited in ‘2C hy protons or electrons. In the first place,

15



Fig. 18 Density and divergence of spin-isospin density for head on 15N = 15N collision
at a cm energy of 20 MeV/A.
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the linear response function may be concistently approximated in the mean-field theory.

In contrast, tae matrix element <¢fIHI¢i> irrevocably tangles up structure from shell
model calculations of I¢f> and I¢i> with that of the operator M which is supposed to
contain a signature of the soft pion mode. Secondly, a Rosenbluth separation of longi-
tudinal and transverse form factors afiords the opportunity of comparing in a single
experiment the response to the charge coupling in the spin-independent channels and the
magnetic moment coupling to the spin-dependent channels. Since the soft pion-like modes
occur only in the spin-dependent channels, it is clear that the ratio of the :wo response
functions affords an unusually high degree of model independence. Finally, it is useful

to note that sophisticated RPA codes already existas)

, and that experiments to separate
longitudinal and transverse form factors are presently underwisy at MIT and Saclay.

4.2 Pion Ccuadensacion in Heavy Ion Reactions

The conventional approach to pion condensation in heavy ion reactions is to calculate
first the equation of state of equilibrated nuclear matter, including the phase transition
from the normal to the condensed phase, and then assume that hydrodynamics governs the
dynamics of the nuclear collision. Such an spproximation which assumes equilibration on a
scale small relative to the scale of spatial variations of the system and allows collec-
tive phenomena to enter only through the equation of state may be fine for the collisions
of neutron stars, but in view of the earlier discussion of longitudinal momentum equili-.
bration lengths, is clearly inadequate for collisions of finite nuclei. Furthermore,
despite claims to the contrary, critical scattering in the presence of a pion condensate
is not particularly effective in diminishing the longitudinal equilibration length, since
the optimal condensate direction is perpendicular to the beiam direction and critical
scattering thus involves only momentum transfers of magnitude equal to the critical
momentum in the transverse direction. In effect, the condensate thus occurs in the worst

possible direction for longitudinal momentum equilibation.



In contrast, in the mean-field theory, the mean field consistently governs evolution
of both the bulk matter and the growth of spin isospin instabilities. A neutral pion con-
densate in this language corresponds to coherent spin-isospin density fluctuations in which
an alternating layer structure arises with layers of excess spin up protons and spin down
peutrons alterunating with layers of excess spin up neutrons and spin down protons, giving
rise to a non-zero expectation value of the source term of the pion field V - <gt>. As
two colliding ions first interpenetrate, the one-body density matrix in the overlapping
region corresponds approximately to two separated Fermi spheres centered at * P/2, where
P represents the relative momentum. The initial prowth of a spin-isospin instability is
thus well described by the RPA propagator, eq. (3,), where the Lindhardt function is now
evaluated for two separated Fermi spheres. The contrast between this mean field result
and the conventional assumption of equilibrated matter is thus quite dramatic. Whereas
15

the driving term for condensation in the case of a single Fermi sphere of radius kf

Ho(q,kf), the driving term for the two interpenetiating Fermi gases corresponding to the
-1/3 kf) if g > kf and the condensate occurs perpen-

dicular to the beam As a result, for a system in which condensation only occurs at three

same total density is 2 no(q, 2

times nuclear matter density in equilibrated matter, the same interaction will yield con-
densation for two interpenetrating gasses at a total demnsity of only about one and a half
times nuclear matter density. This effect immensely increases the chance that a spin-
isospin instability actually does occur in high energy heavy ion collisions.

A first attempt at calculating the buildup of spin-isospin instabilities in the
mean-field approximation37) is shown in Fig. 18 for a head-on collision of 15N on 15N.
Density distributions as a function of r and 2z arc shown at puccessiva times in the
left-hand plots and the pion source term V-<or> is displayed in the right-hand plots.

17



Since the initial spins were selected anti-aligned, if there were no non-linear growth of
the mode, the source term would vanish at maximum overlap (t = 1.125 x 10-22

gec). One
>bserves, however, that during maximum overlap, the spin-isospiun fluctuation is in fact

larger thzn in either of the original nuclei, clearly indicating growtli of the mode.

Jnfortunately, as soon as this very small syitem begins to separate, tie effect quickly

lies away.

There is considerable reason to expect that for larger systems, suck as Pb +
238
b or

U + 238U, the larger regions of overlap and longer overlap times would give rise

.0 much larger amplitude fluctuation~ Tn fact, my p:esent beliet is that spin-isospin

.nstabilities actually do occur during collisions of heavy nuclei alL cm energies of the

rder of 20 MeV/A. The most troubling worry, however, is that although such interesting

nstabilities actually occur in nature, there may well br no practical experiment which
esulte in an unambiguous signature of tueir existence.
Conclusion

I hope to have demonstrated in this survey that the time-dependent mean-field theory

s a versatile and powerrul approach to the nuclear many-body problem. For many applica-

ions, it is the simplest theory which has any chance of iiacorporating the esscutial

hysics of the problem. It may well be computationally cumbersome, but the cost of rel-

vant calculations is still very emall on the scale of the expense of the corresponding

¢periments. Finally, 1 hope to have shown that it provides o useful framework to think

Jout extreme, as well as ordinary, states of nucloar systoen:
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FIGURE CAPTIONS

Fig. 1 Comparison of Baclay electron scattering cross
sections for 208Pb with mean flield theory predictions.

Fig. 2 Comparison of theoretical and
empirically determined charge densities
for 208p),,

Fig. 3 Mean [ield predictions of shapes of deformed intrin-
Eic Elates.

Fig. 4« Comparison of mean-field form factoras with sub-
sequent experimental results for the ground state rota-
tional band in 338y,

Fig. 5 Comparison of the mean=field theory predictions with subsequent experimental form
factors for the octupule vibrations of 238y,

Fig. 6 Comparison of the RPA predicticn
and experimentally reconstructed transi=

tion density for the first 3" state in
acap,,,

Fig. 7 Comparison uof TDHF and experimen=
tal furion cross sections ax a function
of laboratory enerpy.

Fig. 8 Comparison of the energy losn ax a fune-
tion of scat’ « ng angle predicted hy TDHF an!
measured oxpeoimentally.,

Fige 9 The exact ground state eaergy E (solid
line), deviation from E of the HF energy (shon
dashes), and deviation from E of the coupled
cluster energy indluding 52 (Jong dashen),



Fig. 10 Probability P
state from the exact, HF, and second-order
coupled cluster ground state wave functions.

Fig.,11 Excitation energy AE and mean value
of J as a function of interaction time for
exac%, TDHF, and second-order coupled cluster
wave functions.

Fig. 12 Sketch of a double well with two
classically allowed regions separated by one
classically forbidden region.

Fig. 13 Exact Lipkin spectrum (crosses)
compared with the Qgin-field approximation
as a function of ¢ = NV/t. The dot=-dash
curves denote doubly degencrate approximate
solutions and the other curves arce non-
degenerate.

Fig. 14 The constrained energy of a
16-particle model system as a func-
tion of <x%>,

Fig. 15 Self consistent single=particle wave func-
tionu as n function of x at timer T = =T/2 and

T = for the bounce nolution for apontaneoun finnjon
of a 16-particle model system.

Fig. 16 The density o(x,t) for the same

system ag in Fig, 1) as a function of «x
at successive Limes from T = =1/2 to 1=0.
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of projecting a component with 2MJ + 14 particles

in the upper



Fig. 17 Contour plot of integrated density contours displaying
the sequential shapes of ®Be from 1 = -T/2 to T = 0.

Fig. 18 Density and divergence of spin-isospin density for head uvu !N = 15N collision
at a cm energy of 20 MeV/A.
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